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ABSTRACT 

We consider the decay of a time-like gluon into soft gluons in a 

(+44,4 theory. We make a semiclassical approximation by keeping only 

the diagonal tree diagrams. We are able to determine the dominant 

features of the soft gluon emissions by examining the decay amplitude 

in the position space. We have obtained the asymptotic decay rate, the 

average multiplicity and moments of the multiplicity for the final gluons. 

In particular, we find that in the strong coupling limit all the energy of 

the original time-like gluon is turned into emission of soft gluons at 

rest. 
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I. INTRODUCTION 

In this article, we report some results from our continual study of 

the infrared behaviors of massless theories with self-coupling. Although 

our ultimate aim is to understand the infrared structure of non-abelian 

gauge theories at this stage of development, our emphasis is still more 

on methodology. 

Let us recall that in Ref. 1, we have observed that, because of self- 

interaction, a massless gluon can successively split into many gluons. 

If the coupling constant can be made arbitrarily large, then none but soft 

gluons can be excited from a physical system, where by soft we mean 

their energies to be lower than any arbitrary resolution. We envisage 

this as a viable mechanism to prohibit hard gluons from being produced. 

The soft gluons may either materialize into hadrons or act coherently as 

parts of the self-fields of the parents from which they emanate. 

We shall apply this same consideration to a scalar @uon + in 

h 4 four dimensional space, which interacts via ~1 
9 . 

We should hasten 

to qualify our limited scope in this investigation. It is known that 

cd!, is an infrared stable theory2 and hence it will not be meaningful 

to take the strong coupling limit to study its infrared content in the 

context of the full theory. We certainly concur with this sentiment. - 

However, we shall limit ourselves to a study at the tree level only. 
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This, as explained earlier, is but an example to develop new tools. If 

the reader prefers, he may choose to regard 8’ to be a simplified form 

of the quadrilinear coupling which appears in non-abelian gauge theories. 

If, with this understanding, the strong coupling limit is approached. the 

aforementioned mechanism again is seen at work. 

We may also recall that the analysis in Ref. 1 is somewhat tedious. 

We have succeeded in developing a new method, which shortens the whole 

procedure drastically. The crucial .observation is to note that it helps to 

work in the Euclidian coordinate space. The absorptive part of the true 

point function%(x), which is the Fourier transform of what we called the 

inclusive dissociation probability F(p2), is real in this regime. It turns 

out that the singularity (or pole) furthermost away from the origin along 

the real positive axis of z’= - xp’l determines the leading infrared 

behavior in the time-like region $>O of F(p2). Thus, by working 

directly with an integral equation in x2, we can extract the leading 

infrared behavior in pz with great ease. This has the extra merit of 

rendering the analysis transparent. 

The plan of this paper is as follows. In the next section, we 

briefly discuss the diagonal free approximation and write down an integral 

equation so obtained. Sec. III is the novel part of this work, where, after 

introducing spectral representation for the two point function 

( 4”’ IX) cy+ cd) > we observe that for space-like separation it is 

a Fourier-Bessel transform. The inverse transform has the property 
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that F(p’) for !$452i is governed by the furthermost singularity of F(x). 

e 
F(x) is then analytically continued into the Euclidian region of x2 and a 

radial differential equation is generated, which can be easily converted 

into an integral equation. 

In Sec. IV, we discuss the nature of our intention and write down 

analytic expressions for the position of the governing pole of%(x), p , 

in the large and small coupling limits. The distribution properties of 

soft emission processes are briefly touched on. 

Lastly, a summary of the scope of our work in this area is presented 

and further obstacles to be overcome in order to solve the corresponding 

problem in non-abelian gauge theories are exposed. 

Ann appendix is prepared. where the mathematical details to determine 

P 
analytically are given. 

II. DIAGONAL TREE DIAGRAMS 

In this paper, we study the total decay rate for a time-like scalar 

gluon of momentum p(p’p 0) under the self interaction $ &4. We 

restrict ourselves to the diagonal tree diagrams such as in Fig. 1. Just 

as in the (#‘) 6 theory discussed in paper I, the diagonal tree diagrams 

in the (Ql”)+ theory also bound the full tree diagrams from below. In 

the small coupling limit, the diagonal tree diagrams give the leading 

infrared contribution of the full tree diagrams in every order of perturbation 

theory. 
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The diagonal tree diagram F(p2) obeys an integral equation 

Fop? 5 2nq5u’) 4 LL 
I 

6 ‘f+‘-)’ r 

d*%, d4fb d+f3 
i* (G(L lfn/r 

(2.1) 

* I-)+ gy( p-r, +q3 - k) FI f,L~fif,~fi~L) 

with 

Fq’) =o -Fav pL+, & po. (2.2) 

This integral equation is shown graphically in Fig. 2. Eq. (2. 2) is an 

analog of Eq. (A-11) in Appendix A of paper I, and can be derived by the 

same method. We refer the readers to paper I for detailed discussions. 

7. 
The mass parameter / is introduced as an infrared cutoff and will be 

made arbitrarily small. Since only three or more gluon final states can 

2 
contribute to the second term of (2.1). p appearing in the second term 

L 
must always be larger than 7~ . To study the infrared behavior of 

F(p2) it is a good approximation to ignore ,& 
& 

in the propagators in 

the second term. We then obtain the approximate integral equation 

a d?L dqJ 
/zip /An) c f,,,# 

1( r~~)41T~4~q,,~~+~,_~)f~f,t/ff?,I) Flql* 
(2.3) 

One can show that Eq. (2.3) gives rise to the correct small and large 

x solution. 
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III. COORDINATE SPACE FORMULATION AND THE BESSEL TRANSFORM. 

In paper I we showed that the large ($a (or, equivalently the 

small&p) behavior of F(p2) is of the form 

f~)+l = A /Pee (3.1) 

where the exponent is a function of the coupling constant \ . We have 

determined the upper and lower bounds of 
13 

using the method of Laplace 

transform. We refer the readers to paper I for details. In this section, 

we will develop a new method which relates f to the position of a pole 

in the Bessel transform of %x). The method of Bessel transform enables 

us to study f most directly. 

(a) x-space Amplitude 

We define the x-space amplitude as 

(3.2) 

v 
For a time-like /yr, F is a function of both x2 and sign (x0). For a 

space-like x, % is a function of x2 only. It turns out that, to study F(p2) 

for time-like p2, 
4 2 we only need to know F for space-like x . In x-space, 

we can write (2.1) as 

pi) = fYf$, + +y)-2 +)’ (3.3) 
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where [J%py-l is a short-hand notation for x-space Green’s function, 

and g(s) = JT- &-P 2qt.$y 
(277) ” 

= p K,/P%J 
4L7TZA 

4%. sp;Cr d 
&ill, %p*~‘-x‘. (3.4) 

Note that g(x) is a solution of the free field equation 

(aLtp9 $%) -0 . 

We can write (3.3) as 

(3*+4-y 2 &) = “d $., 3 

with the boundary condition 

1’ I* F 
zawJ 

4) = F;a, 
. 

Under the same approximation which leads to (2. 3), we have 

a4FGq =p4&a + $& &q3 

with the same boundary condition (3. 7). In the remaining part of this 

paper, we shall study the solutions to Eqs. (2.3) or equivalently, (3. 8). 

(b) Bessel Transform 

Knowing F(p’) for all time-like p, 
fd 

we can determine F(x ) for a 

space-like x by a Bessel transform. Conversely, knowing$x ) for a 

(3.5) 

(3.6) 

(3.7) 

(3. 8) 
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for space-like x’s, we can determine F(p’) for a time-like p by an 

inverse Bessel transform. 

From Eq. (3. Z), we have 

Fhnr) =f .ii%. e?-xzIg+L) 
3 t2nj* 

s 

I 

d dm’ 

0 
27c F&-j * :iLx’ (3. 9) 

with 

We can cast (3. 9) into the standard Bessel transform3 

4n3;lrfJ’ - J= cn) c f-h (,A)& k,iWX) +L’+ /=(a7 (3.10) 
0 

The inverse transform of (3.10) is well-known, and is given by 

r 

c+iOO 

dx (k&J; cmx) ~v3z’&-) (3.11) 
J c -;oo 

where the contour c is on the right of all the singularities of x 3’2ZX). 

It is easy to see that if F(p2)4Ceek at large p. ?$x’cx, develops a singularity 

at x = 
e* 

Conversely, the large p behavior of F(p2) is dominated by the 

furthest singularity of g(x), i. e., if F(x) has the furthest singularity at 

x=p then, F,.,ePp at large p. For this reason, we only need to study the 

furthest singularity of %x(x, to determine the exponent 
P 

. 
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Cc) Radial Equation 

For space-like x, we can analytically continue (3. 8) into Euclidean 

region. Then, F(x) is spherically symmetric, and obeys the equation 

( 
$, *$ $ z &) =p4& + g=w 

where 

F;rr = - /U lc, wr) 
47r2y 

obeys the free equation 

( g;* +- :ir+.Jq . &j =o 

Next we wish to rewrite (3.12) as an integral equation. We introduce a 

Green’s function G which obeys 

- it++ sr)Grr, r’) = t Jc r- t’, , 

G (V, r’) =b , r7r'. 

The Green’s function satisfying (3.15) and (3.16) is 

G(r, r’) = f (r’- L3)Bfr’-f-l . 
r* 

Using (3.15) - (3.17), we can convert (3.12) into an integral equation 

:r, r’, &-‘) 3 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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where 

Gztr, r’) 2 
SO’ 

dr”Glc r”)Gtr’:r’) 
0 

/= 
SJ. L&k2 

16 r’ I 

Note that the boundary condition (3.7) is satisfied automatically in this 

integral representation. We shall use (3.18) to determine f* Using the 

d 
method of Appendix B in paper I, we can show that F(r) developes a 

singularity at non-vanishing 13 (epu) no matter how small the x is. 

IV. NATURE OF THE SOLUTION AND THE DISTRIBUTION PROPERTIES 

(a) Structure of the Solution 

We can determine the large p/r (or smallp) behavior of the 

solution once the exponent using the asymptotic form p is given. We can achieve this result by 

Fl j9 = fj ,qF (4.1) 

and substitute it into Eq. (2. 3). After integrating out the angular variables 

on the right-hand side of (2. 3) we compare the p n and A terms on both 

sides of Eq. (2. 3), and obtain 

and 

n = -112 (4. 2) 



-12- FERMILAB-Pub-17/50-THY 

A=dW/?* (4. 3) 

Thus, we can express F as 

Fq?‘) = /-- + (8f)3/~e (0 
A (4.4) 

This result can also be obtainedby exaanining the property of z’(r) near the 

singularity r= 
Pa 

As we have demonstrated in paper I, we can obtain all distribution 

properties via F($ once 
P 

is known. 

(b) Determination of 
P 

We can determine the small and large x behaviors of f explicitly, 

the derivation of which is left to an Appendix. The results can be summarized 

as: (1) for small ), we have 

P/^ = Cohr t . e rc 48 (2d _ 
7 J X(<f. / 

It is more convenient to introduce a new coupling constant g via 

2. XL 
= 

4F1Z771Y . 

(4.5) 

(4.6) 

Then we have 

X0 5 (3/u = COhd. e - 
‘/q’ 

> fWe (4.7) 

Note that 
(3 

develops an essential singularity at g=O, and it can not be 

obtained by simple perturbation expansion. (2) For large A (or g), we have 
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(4. 8) 

with b obeying 

b+:hb =&,A. 

We can also express the result in terms of g as well. 

x,, = p/u = b;;k) + cad $ >>/ 

with 

b’+ :& b’=ir, l . 

(4.9) 

(4. IO) 

(4.11) 

(3) For intermediate values of x (or g), we have obtained by solving 

the integral equation (3.18). The results are expressed numerically in 

Figs. ( 3) and (4). The numerical results agree with the exact strong and 

weak coupling behaviors in their corresponding limits. 

Cc) Multiplicity Distribution 

As we have shown in paper I, we can compute the average 

multiplicity and various moments once 

difference between the @’ and 

3 p is known. An important 

4 tree diagrams is that in a 4 3 

theory every tree vertex leads to an additional final particle, while in a 

e theory every tree vertex leads to two additional particles. This 

difference leads to the following modified formulae: 
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<n7=2pa hl F = 1 2% .f + cbnwt* , 
3 at 

<h+?-d7== 4(j’L Q,F 
T ) 

= (1 $Jpp - p t cod., --. . 
The constant terms are negligible in the large f/r limit. 

At small g(or A), we have 

Iz i: y . e’p (- +‘) ) 
and consequently, 

c-7 = SL es (-‘, p 
3 t 9) F/ 

cn’7 -dm7L= r/ ( 1 14 $a) ey-$) $ . 

At large g, we have 

13 = ; [A % - %(+J + a.- 1, 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

cn) = (4.17) 

and 

e 
P * (4.18) 

As in the (f$))L case, the multiplicity reaches the maximally allowed 
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value b at the large g limit. In Figs. (5) and (6) we have plotted 

4-7 and (~‘)-1H7’ (normalized to v ,@ ) for intermediate values 

of g. Other higher multiplicity moments can be computed in a similar 

way. 

V. DISCUSSION 

In this paper, we develop a simple method to study the diagonal 

tree diagrams. This method is also applicable to other theories. This 

is to be contrasted with paper I, where we used the Laplace transform 

method to study the (e3)~ tree amplitudes. In order to apply the Laplace 

transform method, we had to approximate the phase space integral by an 

upper and a lower bound. We determined the behavior of the amplitude 

for both the upper and lower bounds, and thereby obtained the qualitative 

features of the solutions. In the present paper, we are able to study the 

asymptotic behavior directly by the use of a Bessel transform. We can, 

of course, apply the Bessel transform method to (es)6 and obtain the 

diagonal tree amplitudes explicitly. 

As far as the diagonal tree diagrams are concerned, (8)~ and 

W$L theories are very similar. They both have the asymptotic form, 

f(p')= AP"apl. 

They also have similar weak and large coupling behaviors. However, as 

relativistic quantum field theories, (do and (@)d are quite different. 
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The kf?+ theory is infrared free. 
2 

We expect that the true infrared 

behaviors of W 6 theory is much softer than that given by the tree 

amplitude because the running coupling constant vanishes at the infrared 

limit. The large multiplicity (4%) oc p/)4 ) predicted by the (#‘/, tree 

diagram is most likely an overestimate. On the other hand, (43J‘ is 
4 

an asymptotically-free theory , and its running coupling constant becomes 

large at the infrared limit. We might indeed expect to see a large number 

of soft gluons ( Ln7 Oc k/,u ) being emitted for any coupling constant. 

The tree diagrams in a non-abelian gauge theory have many features 

similar to those of the 4’ and & theories: First, both the gauge gluons 

and the scalar gluons 4 are self-coupled via three and/or four point 

vertices. Second, both the non-abelian gauge theory and the (#yb theory 

are renormalizable and asymptotically-free. 5 
However, there are also 

important differences. In particular, the tree diagrams in a non-abelian 

gauge theory arenot positive-definite, and possible cancellations among 

off-diagonal terms are crucial to the asymptotic behavior. In a non- 

abelian gauge theory, the diagonal tree diagrams are neither a lower 

bound to the tree diagrams, nor gauge invariant: only the full tree 

diagrams are gauge invariant. Thus, it is essential to study the full 

tree diagrams in a non-abelian gauge theory. At the moment, we are 

only able to sum the full tree diagrams of a non-abelian gauge theory in 

the leading In approximation. 
6 

However, the leading In result does not 

appear to be relevant at the large p/p (or smallk ) limit. It is therefore 
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almost imperative to study the true asymptotic behavior of the full tree 

diagrams in both the non-abelian gauge theory and the self-coupled scalar 

gluon theories. 
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APPENDIX 
Small and Large Coupling Behavior of 

To study the small and large i (or g) behavior of ~, we start with 

the differential equation (3. 12) 

dL 
d*r’ 

with 

&r) = 
,u K,(rr) 

u7r=t- ) 

and determine the position of the singularity of g at small and large A. 

(a) Small g Behavior 

For sufficiently large r, the )A’ c(r) term on the right-hand side 

of (A. 1) dominates, and we have the relation g(r) = go(r). The? (rj3 

term becomes comparable to p*zcrJ at rl given by 

4 
P = g &J$ 

or equivalently, at 

A K, wrl) 
7% 

= 1 
41Trpr, * 

(A. 1) 

(A. 2) 

(A. 3) 

For small h , the transition point rl (see (A. 3) ) takes place at 

(A. 4) 
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J’v 
For r<<rl, we can ignore the p r=,(r) term and obtain 

dL 
a'r' 

*2 64 
r Jr ' &rJ = -$ &Y)‘. 

Introducing the variables 

z = YS ;cr, ) y = .qrr) 

we have 

(A. 5) 

(A. 6) 

dL -$d3 
+ 20 ;y L rj3 (A. 7) 

We are looking for the solution to (A. 7) with the boundary condition that 

near )‘= JL(py;). 

z ~ /frrw) I 
rc?r% = G+ , 

dl. 
7 = Oih’L’) dC I , 

and 

d’t, 
A)‘” 

ocxrzL) 5; 4-i 1 g; 1 

(A. 8) 

(A. 9) 

(A. 10) 

Note that for y* ln(pt’,) the higher y derivatives in (A. 7) are much smaller 

than the first derivative. As y decrease, Z starts to increase, and 

eventually the higher y derivative terms will dominate. However, for 

sufficiently small x , Z will be very large (NO(~)) before dJL 
3’ 

and other higher derivative terms become important. Thus, we are able 
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to determine the approximate position of the singularity of Z by examining 

only the linear differential equation 

We can solve (A. 11) readily, obtaining 

J- 
2’ =c + 8 Y. 

From the boundary condition (A. 81, we have at small 1 

c= &,- 

and consequently 

I 
z=- L 

L (4X)% +gYp . 
Thus, the position of the singularity of Z is at 

y81477)2 
)/0=-T =- 

i- 

(3p= 20 - 1/f’ . 

(A. 111 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 

(A. 16) 

We wish to make two remarks: (1) As we take the higher y derivatives in 

(A. 7) into account, the functional form of (A. 14) near the singularity 

changes. However, the position of the singularity is still given 
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approximately by (A.16). (2) If we take higher order g’s (orA’s) into 

account, p is modified to 

ff 
= cons t. e%b I- Yy). 

Equation (A. 17) is the small coupling behavior of 

(b) Large g Behavior 

To obtain the large g(or A) behavior, we go back to the original 

equation (A. 1). After making the scale transformations 

l-l 5- ;L ? ) I =Pr 

we obtain 

H obeys the boundary condition 

(A. 17) 

(A. 18) 

(A. 19) 

(A. 20) 

(A. 21) 

For large g, also becomes large. We make a further transformation 

j= )'tb (A. 22) 
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where b is a large constant (* In g) to be defined soon. Ignoring terms 

or smaller, we can rewrite (A. 19) as 

d”HW x 
q= 

-3/a -I) 
= 

e-y + ; /-icyj3 (A. 23) 

choosing b to obey 

x b-% ,-b = , 
, 

we have 

h-i -Y = 
d Y* 4; r 3/l. + dH3 

a- e-y 
Y rm HcY) = #$fi g/%. 300 

(A. 24) 

(A. 25) 

(A. 26) 

Since both the differential Eq. (A. 25) and the boundary condition (A. 26) 

are independent of x , we conclude that the singularity y 
0 

of H in Eq.~ (A. 25) 

and (A. 26) is a constant, independent of x . Hence, the pee ition of the 

singularity of ?C is at 

BP = )/o+b 
with 

b+ p Al b =R,A 

(A. 27) 

(A. 28) 

To CU.+), we can also express (A. 27) as 



with 

-23. 

f/u = )$’ + bt 

b’ + 4 & b' = at., j. 

FERMILAB-Pub-77/50-THY 

and 

y,I = % + R, p2lq~8 3 

L cd. 

(A. 29) 

(A. 30) 

(A. 31) 

Equations (A. 27) - (A. 31) describe the large g(or A) behavior of f. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

FIGURE CAPTIONS 

The decay of a time-like gluon via a diagonal tree 

diagram. 

Graphical representation for the integral equation 

obeyed by the diagonal tree diagrams. 

The exponent )( o= pP as a function of g. 

The behavior of X0 for small values of g. 

Note the approximate linear dependence of ln X0 vs. -$. . 

The average multiplicity <*7/t+) = 1 d&/d8 . g 
vs. g. 
The multiplicity dispersion, (&x1>- .c~?‘)/(p/b) 

) vs. g. 
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